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Abstract: This paper describes how largesale 
decentralized  control theory may be used to analyze 
the stability of multiple  cooperative  robotic  vehicles. 
Models of cooperation are discussed from a 
decentralized  control  system  point of view. Whereas 
decentralized wntrol research in the past has 
concentrated on using  decentralized c o n t r o l l e r s  to 
partition complex  physically intemnected systems, 
this work uses decentralized  methods to connect 
otherwise independent  non  -touching  robotic  vehicles 
so that  they  behave in a stable, coonlinated  fashion. 
A  vector  Liapunov method is used to prove  stability 
of two examples:  the  controlled  motion of multiple 
vehicles  along  a  perimeter and the controlled  motion 
of multiple  vehicles in a  plane. 
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1. INTRODUCTION 

Researchers have  recently begm to investigate 
decentralized mt ro l  techniques to wntrol multiple 
autonomous  vehicles.  Chen and Luh [l] examined 
decentralized  control  laws  that  drove  a set of mo  bile 
robots into  a  circle  formation.  Similarly,  Yamaguchi 
studied  line-formations [2] and general  fonnations 
[3], and so did Yoshida et al, [4]. Decentralized 
control  laws  using  a  potential  field  approach to guide 
vehicles  away from obstacles  can  be found in [5 -61. 
Beni and Liang [q prove  the mergence  of a  linear 
swarm of  distributed  autonomous  vehicles  into  a 
synchronously  achievable  configuration.  Work by 
Liu and  Passino  [12] addresses stability of an 
asynchnom swarm  in  which the vehicles  have 
proximity sensors and use information fiom nearest 
neighbors for positioning. 

In this  paper,  we addms the stable  control of 
multiple  vehicles using large-scale  decentralized 
control techniques [8]. Our goal here is to show how 
a  simple  control  law  for  each  vehicle can guarantee 
stability of the overall swarm. In prior work,  we 
described how to test for  controllability  and 
observability of a  large-scale system [9] as well as 

some  simulation  and hardware tests on a ground - 
based  swarm [11,13]. The goal of  this work is to 
d i n a t e  the  behavior of a  large number (10s to 
100s to 1000s) of autonomous  robotic  vehicles 
performing  various tasks such as ~ ~ c o u n a i s s l l l l c ~ ,  
surveillance,  hazardour  environmental operations, 
physical  security, and logistics support. 

Once we know that  a system is strucnually 
observable  and  controllable,  the  next  question to ask 
is that of connective  stability.  Will  the  overall 
system  be globally  asymptotically  stable  under 
strucnual pemabations? Analysis of connective 
stability is based upon the  concept of veotor 
Liapunov hctions, which associates  several  scalar 
fUnctions with  a  dynamic system in such a  way that 
each  function  guarantees  stability  in &ffmnt 
portions of the state  space. The objective is to prove 
that there exist  Liapunov fimctions for  each of the 
individual  subsystems  and  then  prove  that the vector 
s u m  of  these  Liapunov  fimctions  is  a  Liapunov 
function  for the entire  system. 

2. STABILITY OF LARGE 
SCALE SYSTEMS 

Suppose  that the overall  system is denoted  by 
s : x = f ( t , X , U )  

(1) 
Y = h(t,x) 

where &)E %" is the state  of S (e.&,  x,  y 
position,  orientation,  and  linear  and a n g u l a r  velocities 
of  all  vehicles) at time t~ T, u ( t ) ~  CXm are the 
i n p a  (e.g.,  the  commanded  wheel  velocities of  all 
vehicles), and &)e 93' are the outputs (e.g., GPS 
measured x,y  position  of all vehicles).  The  function 
$ : T x % "   x s r n  +%" describes  the  dynamics  of 

S,andthefimction h : T x % "  +%' describesthe 
observations of S . We  can partition the system into 
N interconnected  subsystems  given  by 
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function fi : T x % ~  + Rq describes  the 
dynamics of Si, and  the  fimction 

5 : TXR' represents  the  dynamic 
interaction  of Si with the rest  of  the  system S . The 

w o n  hi : T X W  Vmts 
observations  at Siderived only from local state 

variables  of Si, and  the fullctim 

6 : T x R n  + S t L i  represents observation  at 
Siderived from the rest of S . The N independent 
subsystems are denoted as 

Sf : 4 = A(t,x,,u,), J E  (1 ,..., Nl (3) 

Yf = 4 (t9Xf) 
Both  local and interconnected  feedback  may be 

added to the system with 
4 = W , y r ) + & ( t , y ) ,  d,.*.,N (4) 

where the fimction k i : T x R t f  +9P represents 
the  feedback  at S i  derived only from local 

observations,  and the function : T x R L  + Rq 
represents the feedback  at S i  derived from the  rest 
of S . For stability analysis,  we  will  assume  that  the 
control function has already been chosen  and  the 
closed loop dynamics of the system can be  written as 
S :  =gi ( t ,x i )+gi ( t ,x ) ,  iE (1 ,  ..., N}. ( 5 )  

where the function g t : T x R " t  +R"1 describes 

&(t ,x)= ~ f ( t , ~ , l X l , ~ f Z X Z , . . ' , ~ ~ X N ) ,  

the  closed  loop  dynamics  of S i .  The  closed loop 
interconnection function can be written as 

(6) i E {1, ..., N} 
where 6J E Bnixnj , and the elements of the 

funciamental interconnection  matrix F = (zU) are 

(7) 
W h e  4 E  C,] and P E { d .  

The structural perturbations  of S are intmdwed 
by assuming  that the elements  of the ibdamental 

' 'Thetef*, the dements eij represent  the strength of 
&upling b e m k  the  individual subsystems. A 
system is  connectively stable if it is stable  in  the 
sense of  Liapunov  for  all  possible E = ( e ~  ) [8]. In 
other words, if  a  system is coqectively stable, it is 
stable  even if an  interconnection  becomes  decoupled, 
i.e. ey = 0 ,  or if' interconnection 'parameters are 
perturbed,  i.e. 0 < ey < 1. This is potentially  very 
powerful, as it  proves  that  the  system  will be stable if 
an  interconnection is lost through communication 
failure. 

For a  possibly  nonlinear system S to be 
connective1  stable,  there must exist  a matrix 
W = (wg I that is an  M-matrix  (i.e. all leading 

principal  minors  must  be  positive): 

where Ki > 0, and the scalar function 

VI  : T X P '  + %+must satisfy a Lipscktz 
condition 

Also,  the  constant sif 2 0 for i # j and satisfy 

(11) 
where the time  derivative  of  the  Liapunov fimctim is 
less than the  nexative  of  the  comDarison  fimctim 

For linear systems, the  matrix W is a function of 
the  eigenvalues of the state transition  matrix. 
Suppose the  linear system dynamics  are 

N 

J=1 
S :  ii = A , x ~ +  e4Agxj,  ~E{I, ..., N} 

9 (13) 
and the Liapunov function for  each  individual 

subsystem  is v i ( x i )  = ($Hixi r'2 where Hi is  a 
positive  definite  matrix. For the  system S to be 
connectively  stable, the following  test matrix 
W = (w4)  must be an M-matrix [8]: 



_. ..\ ... l , .  . . , 

where the iymmetric  positive  decriite ' m a t r i x '  "'Gi 
satisfies the ~ i a p u n ~ v  . matrix . &$i&on" ~ 

ATHi + HiAi = -Gi, and A,(*) and &(o) ace 
the  minimum and maximum  eigenvalues  of  the 
corresponding matrices.  This  same  analysis can also 
be performed in  the  discrete  domain [ 101. 

2.1 Example of a  Linear 
Interconnected  System 

As an  example,  let us analyze  a  simple  lin ear one- 
dimensional  problem in which  a  chain of 
interdependent  vehicles is to spread out along a  line 
as shown in  Figure  l(a).  The  objective is to spread 
out evenly along the  line  using  only  information from 
the nearest neighbor. 

t=O 

Figure 1. (a) One-dimensional control problem.  The 
top  line  is +e initial  state.  The  second  line is the 
desired  final state. Vehicles 0 and 3 are boundary 
conditions. Vehicles 1 and 2 spread out along the 
line by using only the position of their left and right 
neighbor. (b) Control block  diagram  of N -vehicle 
interaction  problem. 

Assume that  the  vehicle's  plant  is  modeled as a 
simple  integrator,  and  the  commanded  input  is  the 
desired  velocity of the  vehicle along the  line.  A 
feedback  loop  and  a  proportional  gain K ,  are used 
to control  each  vehicle's  position. (see Figure l(b)). 
The  dynamics  of  each  subsystem  is 
si : X i  = -K P i  X + K , u ~ ,  ic { l , . . . , ~ }  

3 2 1 0 (15) 
Yi = x i  

X 
where xi is the  position  of the ith  vehicle, is the 
control input, and yi is  the  observation.  Assume  the 
control of each  vehicle is a  fimction  of the two 
nearest  vehicles'  observed  positions, and the 
bornday conditions on the first and  last  vehicle are 1 
and 0, respectively. 

u1 =l+?[vz 
ui =ybI-1 +yi+l ) i E b,..., -11 (16) 

uN = w N - 1  
where y is the interaction  gain between vehicles.  For 
this  linear s y s k ,  the  test  matrix  becomes 



- - 
K ,  - K p r .  .. 0 . . .. * e *  . , 0 

- K p y  K p  " - K p Y  , .  
8 :  

w =  0 -llfpY . I  KP 0 
# .  - K p Y  

L , .  . . a ,  

0 

(1 7) 

... . . . .  ,., , I I .. , . _ .  

- ' , , 0 . ,. -KP:,.. . ., , KP - 
Por N=2, this test matrix is M-madx (i.e.  the 

is connectively  stable)  if bI< 1. For N=3, 

the  system  is  connectively  stable if fyI < 5. For 

N=4, the  system is oomectively  stable if 
bl< 0.618 . Notice how  the range of the interaction 
gain gets  smaller for larger sized systems. In fact,  for 
this particular example,  the interaction gain  range 
reaches a  limit of blS 0.5 for  infinite  numbers of 
vehicles.  More  details  on the linear  interconnected 
case  can be found in [l I] including  discussion  of  the 
stability "house" that  describes the stability 
boundaries of the system w.r.t. and K p  that  can 
be derived from the  M -matrix in (1 7). 

Figure 2. (a) Initial  configuration  of  vehicles. (b) 
Desired configuration. 

2.2 Example of a Non-Linear 
Interconnected System 

Next,  let us consider  the  problem  of  N  vehicles 
spreading  out  in  a twodimensional space while 
staying  a  specified  distance from their  neighbors (See 
Figure 2). We assume  that  the  vehicles  communicate 
their  position to their  neighbors and that  each  vehicle 
knows the distance  that  it is suppose to be from 
neighboring  vehicles. Is there  a  decentralized m t m l  
that will drive the group of  vehicles to the desired 

To solve such a problem, a  gradient -based control 
law is -sed and  a  vector  Liapunov  technique [SI 
is  used to prove  stability.  The  dynamics  of  the 
vehicles  am  essentially  ignored so that  the  vehicle 

canfiguration? 

(19) '. 

. , . . . . . 
... . 

Where 
, .  

I 0 ,  ,lis not nkes t  neighbor 
ev. =. 1, j'is nearest  neighbor (20) 

and dij  ap, the desired distaucis between  the f and] 

vehicles (ate d~ .= dfl  .m&,  . &u = 0 ). The 
decentralized  Liapunov functions vf are a  measure of 
the sum of the squared errors in  distance  for  vehicle f 
with  respect to all the  neighboring  vehicles.  Since 
thisfunctionisnotmat Yj =O,anewstatevector 
.3* = ,Ti -4 .is defined such* that ' 

. .  

.. , * .. 

where K,o is the  final positibn of  the  ith  vehicle  after 
the  vehicles a p  dispersed and is  considered  a 

Then +e Liapunov function for the ith 
vehicle c a n '  be written as 

which equals zero when Zf =O and is greater than 
m for 3i # 0 . 

In order to minimize the ith  vehicle  Liapunov 
W i o n ,  we  use  a c o n t r o l  law. that is the  spatial 
gradient of the Liapunov  fimction: 

where > 0 is the c o n t r o l  gain. The time  derivative 
of  the  ith  vehicle  Liapunov bcti& is  given  by 



where " 

Since +, < 0 and  it is equal to zqo only  at Zi = 0 , 
this is  a  valid  Liapunov hct ion and  the  gradient - 
based control law  is  stable  for  a  single  vehicle. 

The  next step is  to show  that  when all vehicles 
use the  same  control  law  that the entire  system  is 
stable. We assume  that the Liapunov  function  for  the 
entire system can be  described as a  vector  Liapunov 
function  (the s u m  of the  individual  Liapunov 
functions) 

where p j  > O .  Cleatly, vLOforall  369f"anditis 
equal to zero only  if ? = 0 .  We  want to show  that 
++,?)SO forall ?E%" andi t i sequal tomonly  
if 2 = 0 .  The time  derivative of the  vector  Liapunov 
function is 

Liapmov , fimction . v(t,?) is  valid,  and the 
decentralized  gradient-based .control law  drives  the 
entire system to a  stable &f ip t ion .  

.. , . 

3. CONCLUSIONS I . .  1 .  

In ,$is paper, we  mathematically  described how 
to determine  if  a cq'erative robotic  system is 
comiectively  stable.  We.illustrated  the use of  this 
technique on both  a  linear  and  a non -linear  problem. 
The cGntr01  law for  the  linear  problem has been 
applied  to'4.obotic  perimeter  surveillance task. The 
contrbl  law for the non-linear  problem has been 
applied to a  building  surveillance task. Hardware 
implementation  of these cpntrol algorithms is being 
conducted on the  vehicles  depicted  in  Fig. 3. In 
addition, high  fidelity  simulations  using  a  modeling 
and  simulation todl Clt Sandia called Umbra [ 141 are 
also  ongoing as shown in  Fig. 4 (details can be  found 
in [ll]). 

I . .  . . .  
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Figure 3. Experimental testing of  robotic 
vehicles  setting  up a communicatiodnavigation 
network  inside a building. 


